5,8-DITHIAFULVALENE-1,4-QUINONE [2-(1,3-DITHIOL-2-YLIDENE)-4-CYCLOPENTENE-1,3-DIONE]

Jyuzo NAKAYAMA, Miyoko ISHIHARA, and Masamatsu HOSHINO
Department of Chemistry, Faculty of Science, Saitama University,
Urawa, Saitama 338

5,8-Dithiafulvalene-1,4-quinone [2-(1,3-dithiol-2-ylidene)-4-cyclo-pentene-1,3-dione] and its benzo-derivatives were synthesized and their spectroscopic properties were described.

Both sesquifulvalene $(\underline{1})^{1}$ and 1,4-dithiafulvalene $(\underline{2})^{2}$, which are iso- π -electronic each other, have the properties of polyolefins rather than aromatic compounds. Kitahara et al. have reported the synthesis and properties of a stable quinone derivative of $\underline{1}$, sesquifulvalene-1,4-quinone $(\underline{3})$. This paper describes the synthesis of 5,8-dithiafulvalene-1,4-quinone [2-(1,3-dithiol-2-ylidene)-4-cyclo-pentene-1,3-dione] (4a) and its benzo-derivatives which are iso- π -electronic with 3.

$$\begin{bmatrix} s \\ s \end{bmatrix} \qquad \begin{bmatrix} s \\ \frac{3}{5} \end{bmatrix} \qquad \begin{bmatrix} \frac{3}{5} \\ \frac{4a}{5} \end{bmatrix} \qquad \begin{bmatrix} \frac{3}{5} \\ \frac{$$

The synthesis of $\underline{4e}$, a derivative of $\underline{4a}$, has been recently reported by two groups, 4 ,5) which includes the condensation of 1,3-indandione with 2-methylthio-and 2-piperidino-4-phenyl-1,3-dithiolylium salts. We prepared 2,3-benzo-5,8-dithia-fulvalene-1,4-quinone ($\underline{4b}$), mp > 290°C, yellow needles (from benzene), in 84% yield by the reaction of 1,3-indandione with the iodide salt $\underline{5}^6$) in the presence of pyridine in boiling acetonitrile. Found: C, 58.20; H, 2.46; S, 26.01%. Calcd for $C_{12}H_6O_2S_2$: C, 58.55; H, 2.46; S, 26.00%. However, all attempts to prepare the parent quinone $\underline{4a}$ from $\underline{5}$ and 4-cyclopentene-1,3-dione were unsuccessful, products isolated being only 1,3-dithiol-2-thione ($\underline{6a}$) and intractable tars.

The reaction of 4-cyclopentene-1,3-dione with 2 molar amounts of 1,3-dithio1ylium tetrafluoroborate⁷⁾ in an aqueous ethanol at room temperature gave compound $\frac{7a}{10}$ in 76% yield; mp 166-167°C (decompn.), $v_{C=0}$ 1680 cm⁻¹, δ (CDC1₃) 5.72 (2H, s), 5.90 (4H, s), and 7.46 (2H, s). The oxidation of 7a with DDQ (2,3-dichloro-5,6dicyano-1,4-benzoquinone) in dioxane at room temperature gave rise to the parent quinone 4a, mp ca. 237°C (decompn.), red prisms (from benzene), in 76% yield in addition to 1,3-dithiol-2-one (6b) (23%). 8 4a, Found: C, 49.29; H, 2.12; S, 32.63%. Calcd for $C_8H_4O_2S_2$: C, 48.99; H, 2.06; S, 32.63%. 4-Cyclopentene-1,3-dione also reacted with 2 molar amounts of the benzodithiole $\underline{8}^9$) in acetic acid at room temperature to give 2,2-bis(1,3-benzodithio1-2-y1)-4-cyclopentene-1,3-dione ($\frac{7c}{1}$) in 66% yield; mp 178°C (decompn.), $\nu_{C=0}$ 1680 cm⁻¹, δ (CDC1 $_3$) 5.75 (2H, s), 7.0-7.4 (4H, AA'BB' m), and 7.45 (2H, s). Compound 7c, on oxidation with DDQ, was converted into 6,7-benzo-5,8-dithiafulvalene-1,4-quinone (4c) (90%), mp 243-245°C (decompn.), yellow needles (from dioxane) and 1,3-benzodithiol-2-one (9) (40%). 58.31; H, 2.54; S, 26.00%. Calcd for $C_{12}H_6O_2S_2$: C, 58.55; H, 2.46; S, 26.00%. The reaction of 1,3-indandione with $\frac{8}{10}$ gave 2,2-bis(1,3-benzodithio1-2-y1)-1,3-indandione ($\frac{7d}{10}$), mp > 290°C, quantitatively, $\frac{10}{10}$ and then the oxidation of $\frac{7d}{10}$ with DDQ resulted in the quantitative formation of 2,3-benzo-6,7-benzo-5,8-dithiafulvalene-1,4-quinone (4d), mp > 290°C, greenish yellow needles (from benzene). Found: C, 64.81; H, 2.78; S, 21.56%. Calcd for $C_{16}H_8O_2S_2$: C, 64.87; H, 2.73; S, 21.61%. Quinones $\underline{4}$ thus obtained have high melting points, are thermally stable, and are scarcely soluble in organic solvents.

2-(1,3-Dithiolan-2-ylidene)-1,3-indandione ($\underline{10}$) and 2-(1,3-benzodithiol-2-ylidene)cyclohexane-1,3-dione ($\underline{11}$) were also prepared for comparison with $\underline{4}$; $\underline{10}$, mp 251-254°C, was obtained by the reaction of 2-methylthio-1,3-dithiolanylium methyl-sulfate $\underline{11}$) with 1,3-indandione in 66% yield and $\underline{11}$, mp 208-209°C, by the oxidation of compound $\underline{12}^{12}$) with DDQ in 97% yield. The spectroscopic data of compounds $\underline{4}$, $\underline{10}$, and $\underline{11}$ are summarized in the Table.

Spectroscopic Data of Quinone	Spectroscopi	ic Data	of ()uinones
-------------------------------	--------------	---------	------	----------

Compounds	IR (Nujo1) $v_{C=0}$ (cm ⁻¹)	UV (CHC1 $_3$) λ_{\max} (nm) (log ϵ)	Η NMR (δ, TMS) ^{a)}
<u>4a</u>	1647	380 (4.39), 288 (3.00)	
<u>4b</u>	1653	411 (4.69), 309 (3.59), 29	97 (3.46) 7.69 (4H) ^{b)} , 7.74 (2H, s)
<u>4c</u>	1656	378 (4.53), 290 (3.42)	7.10 (2H, s), 7.4-7.5, 7.9-8.0 (4H, AA'XX' m)
<u>4d</u>	1665	411 (4.79), 309 (3.75), 29	97 (3.65) c)
<u>10</u>	1666	368 (4.43), 355 (4.49), 30	07 (4.11) 3.51 (4H, s), 7.6-7.9 (4H, AA'BB' m) ^{d)}
		295 (3.90)	
11	1640 w	387 (4.64), 305 (3.41)	2.07 (2H, quintet), 2.72 (4H, t), 7.4-7.6
	1595		7.8-8.0 (4H, AA'XX' m) ^{d)}

a) Determined at 100 MHz with DMSO- d_6 as solvent at 100°C unless otherwise stated. b) Singlet with fine line structure. c) A well-defined spectrum could not be obtained owing to the insolubility of the sample.

The carbonyl frequency of $\frac{4}{4}$ falls in the same range of 1647-1665 cm⁻¹ as those of $\frac{3}{4}$ and its derivatives. A high-frequency shift of the carbonyl absorption is observed when the C_6 - C_7 double bond of $\frac{4}{4}$ is saturated; $\frac{4b}{4}$ absorbs at 1653 cm⁻¹ whereas $\frac{10}{4}$ absorbs at 1666 cm⁻¹. The saturation of the C_6 - C_7 double bond also results in the fairly large hypsochromic shift of the UV absorption maximum; the longest absorption of $\frac{4b}{4}$ appears at 411 nm and that of $\frac{10}{4}$ at 368 nm. These data suggest that the C_6 - C_7 double bond enters into the cyclic conjugated system, that is, the entirely delocalized polar structure $\frac{13a}{4}$ makes a predominant contribution to the ground state of $\frac{4}{4}$ over the partially delocalized structure $\frac{13b}{4}$. The dithiole ring protons of $\frac{4b}{4}$ resonate at δ 7.74 and the cyclopentenedione ring protons of $\frac{4c}{4}$ at δ 7.52 can be assigned to the dithiole ring protons and the singlet at δ 6.98 to the cyclopentenedione ring protons. The olefinic protons of $\frac{14a}{4}$ (CDC1 $_3$) and $\frac{14b}{4}$ (CC1 $_4$) $\frac{14}{4}$,

in which cyclic conjugation is impossible due to an insulating sp 3 C-2 carbon atom, resonate at δ 6.07 and 6.20, respectively. Compounds $\underline{6a}$ (CDC1 $_3$) and $\underline{6b}$ (CDC1 $_3$), in which the dipolar form $\underline{6'}$ allows positive-charge delocalization over the entire ring, exhibit the olefinic proton resonance at δ 7.17 and 6.78, respectively. The appearance of the dithiole ring proton signal of $\underline{4a}$ at a lower field than that of of $\underline{6}$ as well as $\underline{14}$, even if the solvent used for measurement is not the same, is suggestive of the pronounced contribution of $\underline{13a}$ to the ground state of $\underline{4}$. The bathochromic shift observed in going from $\underline{4c}$ (λ_{max} 378 nm) to $\underline{11}$ (λ_{max} 387 nm), on the other hand, indicates that the structure $\underline{13c}$ also contributes to the ground state of $\underline{4}$ to some extent. Such a bathochromic shift was also observed with $\underline{3}$ when its C_2 - C_3 double bond was saturated. $\underline{3}$)

Acknowledgement: Financial support by a Grant in Aid for Scientific Research from the Ministry of Education (No. 154150) is gratefully acknowledged.

- References and Notes -

- 1) H. Prinzbach and W. Rossowog, Angew. Chem., <u>73</u>, 543 (1961); M. Neuenschwander and W. K. Schenk, Chimia, 26, 194 (1972).
- 2) R. Gompper and E. Kutter, Chem. Ber., 98, 2825 (1965).
- 3) Y. Kitahara, I. Murata, and T. Asano, Bull. Chem. Soc. Jpn., <u>34</u>, 589 (1961); idem ibid., <u>37</u>, 924 (1964); S. Katagiri, I. Murata, Y. Kitahara, and H. Azumi, ibid., 38, 282 (1965).
- 4) E. Campaigne and R. D. Hamilton, J. Org. Chem., 29, 1711 (1964).
- 5) K. Hirai, T. Ishiba, and H. Sugimoto, Tetrahedron Lett., 1971, 1137.
- 6) E. Klingsberg, J. Am. Chem. Soc., 86, 5290 (1964).
- 7) F. Wudl, M. L. Kaplan, E. J. Hufnagel, and E. W. Southwick, Jr., J. Org. Chem., 39, 3609 (1974).
- 8) The mechanism and scope of this reaction are under investigation.
- 9) J. Nakayama, Synthesis, 1975, 38. This compound serves as a precursor of 1,3-benzodithiolylium ion in acetic acid: J. Nakayama, Synthesis, 1975, 170; J. Nakayama, M. Imura, and M. Hoshino, Chem. Lett., 1975, 1319.
- 10) Even the use of an equimolar amount of $\underline{8}$ to the 1,3-dione resulted in the exclusive formation of $\underline{7d}$.
- 11) R. Gompper and E. Kutter, Chem. Ber., 98, 1369 (1965).
- 12) J. Nakayama, J. Chem. Soc., Perkin Trans. 1, 1976, 540.
- 13) E. M. Engler and V. V. Patel, Tetrahedron Lett., 1975, 1259.
- 14) This compound was prepared in 72% yield by treating 1,3-dithiolylium tetrafluoroborate with methanol in the presence of sodium bicarbonate; bp 70-72°C/13 mmHg, colorless liquid.

(Received November 18, 1976)